GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice

Author:

Tian Jide,Middleton Blake,Lee Victoria Seunghee,Park Hye Won,Zhang Zhixuan,Kim Bokyoung,Lowe Catherine,Nguyen Nancy,Liu Haoyuan,Beyer Ryan S.ORCID,Chao Hannah W.,Chen Ryan,Mai Davis,O’Laco Karen Anne,Song Min,Kaufman Daniel L.

Abstract

Some immune system cells express type A and/or type B γ-aminobutyric acid receptors (GABAA-Rs and/or GABAB-Rs). Treatment with GABA, which activates both GABAA-Rs and GABAB-Rs), and/or a GABAA-R-specific agonist inhibits disease progression in mouse models of type 1 diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and COVID-19. Little is known about the clinical potential of specifically modulating GABAB-Rs. Here, we tested lesogaberan, a peripherally restricted GABAB-R agonist, as an interventive therapy in diabetic NOD mice. Lesogaberan treatment temporarily restored normoglycemia in most newly diabetic NOD mice. Combined treatment with a suboptimal dose of lesogaberan and proinsulin/alum immunization in newly diabetic NOD mice or a low-dose anti-CD3 in severely hyperglycemic NOD mice greatly increased T1D remission rates relative to each monotherapy. Mice receiving combined lesogaberan and anti-CD3 displayed improved glucose tolerance and, unlike mice that received anti-CD3 alone, had some islets with many insulin+ cells, suggesting that lesogaberan helped to rapidly inhibit β-cell destruction. Hence, GABAB-R-specific agonists may provide adjunct therapies for T1D. Finally, the analysis of microarray and RNA-Seq databases suggested that the expression of GABAB-Rs and GABAA-Rs, as well as GABA production/secretion-related genes, may be a more common feature of immune cells than currently recognized.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3