Morphological Signal Processing for Phenotype Recognition of Human Pluripotent Stem Cells Using Machine Learning Methods

Author:

Vedeneeva Ekaterina1,Gursky Vitaly23ORCID,Samsonova Maria1,Neganova Irina2

Affiliation:

1. Department of Physics and Mechanics & Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia

2. Laboratory of Molecular Medicine, Institute of Cytology, 194064 Saint Petersburg, Russia

3. Theoretical Department, Ioffe Institute, 194021 Saint Petersburg, Russia

Abstract

Human pluripotent stem cells have the potential for unlimited proliferation and controlled differentiation into various somatic cells, making them a unique tool for regenerative and personalized medicine. Determining the best clone selection is a challenging problem in this field and requires new sensing instruments and methods able to automatically assess the state of a growing colony (‘phenotype’) and make decisions about its destiny. One possible solution for such label-free, non-invasive assessment is to make phase-contrast images and/or videos of growing stem cell colonies, process the morphological parameters (‘morphological portrait’, or signal), link this information to the colony phenotype, and initiate an automated protocol for the colony selection. As a step in implementing this strategy, we used machine learning methods to find an effective model for classifying the human pluripotent stem cell colonies of three lines according to their morphological phenotype (‘good’ or ‘bad’), using morphological parameters from the previously published data as predictors. We found that the model using cellular morphological parameters as predictors and artificial neural networks as the classification method produced the best average accuracy of phenotype prediction (67%). When morphological parameters of colonies were used as predictors, logistic regression was the most effective classification method (75% average accuracy). Combining the morphological parameters of cells and colonies resulted in the most effective model, with a 99% average accuracy of phenotype prediction. Random forest was the most efficient classification method for the combined data. We applied feature selection methods and showed that different morphological parameters were important for phenotype recognition via either cellular or colonial parameters. Our results indicate a necessity for retaining both cellular and colonial morphological information for predicting the phenotype and provide an optimal choice for the machine learning method. The classification models reported in this study could be used as a basis for developing and/or improving automated solutions to control the quality of human pluripotent stem cells for medical purposes.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3