High-Altitude Hypoxia Induces Excessive Erythrocytosis in Mice via Upregulation of the Intestinal HIF2a/Iron-Metabolism Pathway

Author:

Zhou Sisi123,Yan Jun123,Song Kang123,Ge Ri-Li123

Affiliation:

1. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China

2. Key Laboratory of High-Altitude Medicine, Ministry of Education, Xining 810001, China

3. Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810001, China

Abstract

Excessive erythrocytosis (EE) is a preclinical form of chronic mountain sickness (CMS). The dysregulation of iron metabolism in high-altitude hypoxia may induce EE. The intestinal hypoxia-inducible factor 2 alpha (HIF2a) regulates the genes involved in iron metabolism. Considering these findings, we aimed to investigate the function and mechanism of intestinal HIF2α and the iron metabolism pathway in high-altitude EE mice. C57BL/6J mice were randomized into four groups: the low-altitude group, the high-altitude group, the high-altitude + HIF2α inhibitor group, and the high-altitude + vehicle group. In-vitro experiments were performed using the human intestinal cell line HCT116 cultured under hypoxic conditions for 24 h. Results showed that high-altitude hypoxia significantly increased the expression of intestinal HIF2α and iron metabolism-related genes, including Dmt1, Dcytb, Fpn, Tfrc, and Fth in EE mice. Genetic blockade of the intestinal HIF2α-iron metabolism pathway decreased iron availability in HCT116 cells during hypoxia. The HIF2α inhibitor PT2385 suppressed intestinal HIF2α expression, decreased iron hypermetabolism, and reduced excessive erythrocytosis in mice. These data support the hypothesis that exposure to high-altitude hypoxia can lead to iron hypermetabolism by activating intestinal HIF2α transcriptional regulation, and reduced iron availability improves EE by inhibiting intestinal HIF2α signaling.

Funder

Qinghai Plateau Medicine Clinical Research Center Project

National Natural Science Foundation of China

Qinghai Fundamental Scientific and Technological Research Plan

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3