Type VI Secretion System Accessory Protein TagAB-5 Promotes Burkholderia pseudomallei Pathogenicity in Human Microglia

Author:

Lohitthai Sanisa1,Rungruengkitkun Amporn1,Jitprasutwit Niramol2ORCID,Kong-Ngoen Thida1,Duangurai Taksaon3ORCID,Tandhavanant Sarunporn14ORCID,Sukphopetch Passanesh1ORCID,Chantratita Narisara15,Indrawattana Nitaya1ORCID,Pumirat Pornpan1

Affiliation:

1. Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

2. Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand

3. Department of Companion Animal Clinical Sciences, Kasetsart University, Bangkok 10900, Thailand

4. Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan

5. Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

Abstract

Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3