Machine Learning Algorithms to Predict Mortality of Neonates on Mechanical Intubation for Respiratory Failure

Author:

Hsu Jen-FuORCID,Yang ChiORCID,Lin Chun-YuanORCID,Chu Shih-Ming,Huang Hsuan-Rong,Chiang Ming-Chou,Wang Hsiao-Chin,Liao Wei-Chao,Fu Rei-Huei,Tsai Ming-HorngORCID

Abstract

Background: Early identification of critically ill neonates with poor outcomes can optimize therapeutic strategies. We aimed to examine whether machine learning (ML) methods can improve mortality prediction for neonatal intensive care unit (NICU) patients on intubation for respiratory failure. Methods: A total of 1734 neonates with respiratory failure were randomly divided into training (70%, n = 1214) and test (30%, n = 520) sets. The primary outcome was the probability of NICU mortality. The areas under the receiver operating characteristic curves (AUCs) of several ML algorithms were compared with those of the conventional neonatal illness severity scoring systems including the NTISS and SNAPPE-II. Results: For NICU mortality, the random forest (RF) model showed the highest AUC (0.939 (0.921–0.958)) for the prediction of neonates with respiratory failure, and the bagged classification and regression tree model demonstrated the next best results (0.915 (0.891–0.939)). The AUCs of both models were significantly better than the traditional NTISS (0.836 (0.800–0.871)) and SNAPPE-II scores (0.805 (0.766–0.843)). The superior performances were confirmed by higher accuracy and F1 score and better calibration, and the superior and net benefit was confirmed by decision curve analysis. In addition, Shapley additive explanation (SHAP) values were utilized to explain the RF prediction model. Conclusions: Machine learning algorithms increase the accuracy and predictive ability for mortality of neonates with respiratory failure compared with conventional neonatal illness severity scores. The RF model is suitable for clinical use in the NICU, and clinicians can gain insights and have better communication with families in advance.

Funder

Chang Gung Memorial Hospital, Linkou

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3