Artificial Intelligence Identifies an Urgent Need for Peripheral Vascular Intervention by Multiplexing Standard Clinical Parameters

Author:

Sonnenschein Kristina,Stojanović Stevan D.,Dickel NicholasORCID,Fiedler Jan,Bauersachs Johann,Thum Thomas,Kunz Meik,Tongers Jörn

Abstract

Background: Peripheral artery disease (PAD) is a significant burden, particularly among patients with severe disease requiring invasive treatment. We applied a general Machine Learning (ML) workflow and investigated if a multi-dimensional marker set of standard clinical parameters can identify patients in need of vascular intervention without specialized intra–hospital diagnostics. Methods: This is a retrospective study involving patients with stable PAD (sPAD, Fontaine Class I and II, n = 38) and unstable PAD (unPAD, Fontaine Class III and IV, n = 18) in need of invasive therapeutic measures. ML algorithms such as Random Forest were utilized to evaluate a matrix consisting of multiple routinely clinically available parameters (age, complete blood count, inflammation, lipid, iron metabolism). Results: ML has enabled a generation of an Artificial Intelligence (AI) PAD score (AI-PAD) that successfully divided sPAD from unPAD patients (high AI-PAD in sPAD, low AI-PAD in unPAD, cutoff at 50 AI-PAD units). Furthermore, the probability score positively coincided with gold-standard intra-hospital mean ankle-brachial index (ABI). Conclusion: AI-based tools may be promising to enable the correct identification of patients with unstable PAD by using existing clinical information, thus supplementing clinical decision making. Additional studies in larger prospective cohorts are necessary to determine the usefulness of this approach in comparison to standard diagnostic measures.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3