Use of Oral Anticoagulation and Diabetes Do Not Inhibit the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes

Author:

Moog Philipp,Jensch Maryna,Hughes Jessica,Salgin Burak,Dornseifer Ulf,Machens Hans-Günther,Schilling Arndt F.ORCID,Hadjipanayi Ektoras

Abstract

Patients suffering from tissue ischemia, who would greatly benefit from angiogenesis-promoting therapies such as hypoxia preconditioned blood-derived secretomes commonly receive oral anticoagulation (OA) and/or have diabetes mellitus (DM). In this study, we investigated the effect of OA administration on the in vitro angiogenic potential of hypoxia preconditioned plasma (HPP) and serum (HPS), prepared from nondiabetic/diabetic subjects who did not receive OA (n = 5) or were treated with acetylsalicylic acid (ASA, n = 8), ASA + clopidogrel (n = 10), or nonvitamin K antagonist oral anticoagulants (n = 7) for longer than six months. The effect of DM was differentially assessed by comparing HPP/HPS obtained from nondiabetic (n = 8) and diabetic (n = 16) subjects who had not received OA in the past six months. The concentration of key proangiogenic (vascular endothelial growth factor or VEGF) and antiangiogenic (thrombospondin-1 or TSP-1 and platelet factor-4 or PF-4) protein factors in HPP/HPS was analyzed via ELISA, while their ability to induce microvessel formations was examined in endothelial cell cultures. We found that OA use significantly reduced VEGF levels in HPP, but not HPS, compared to non-OA controls. While HPP and HPS TSP-1 levels remained largely unchanged as a result of OA usage, HPS PF-4 levels were significantly reduced in samples obtained from OA-treated subjects. Neither OA administration nor DM appeared to significantly reduce the ability of HPP or HPS to induce microvessel formations in vitro. These findings indicate that OA administration does not limit the angiogenic potential of hypoxia preconditioned blood-derived secretomes, and therefore, it does not prohibit the application of these therapies for supporting tissue vascularization and wound healing in healthy or diabetic subjects.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3