Sodium Butyrate (NaB) and Sodium Propionate (NaP) Reduce Cyclin A2 Expression, Inducing Cell Cycle Arrest and Proliferation Inhibition of Different Breast Cancer Subtypes, Leading to Apoptosis

Author:

Ibrahim José-Noel1,El-Hakim Sandy2,Semaan Josiane3,Ghosn Stéphanie3,El Ayoubi Hiba3,Elnar Arpiné Ardzivian3,Tohme Najat3,El Boustany Charbel3

Affiliation:

1. Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut 1102, Lebanon

2. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

3. Department of Laboratory Science, Faculty of Public Health—Branch 2, Lebanese University, Fanar 2611, Lebanon

Abstract

Sodium butyrate (NaB) and sodium propionate (NaP) have recently garnered attention for their role in regulating inflammation and controlling signaling pathways of cell growth and apoptosis, potentially preventing cancer development. However, their therapeutic effect and the underlying mechanisms involved remain elusive in breast cancer. This study aims at investigating the anticancer role of NaB and NaP in different types of breast cancer by assessing their antiproliferative effect on MCF-7 and MDA-MB-231 cells (through an MTT assay), as well as their ability to alter the cell cycle and cyclin expression (using flow cytometry and RT-qPCR, respectively), and to promote apoptosis (using Annexin V-FITC conjugated and sub-G1 phase techniques). MDA-MB-231 cell proliferation was inhibited by NaB and NaP in a dose- and time-dependent manner with respective IC50 values of 2.56 mM and 6.49 mM. Treatment induced cell arrest in the G1 phase which was further supported by the significant reduction in cyclin A2 and cyclin B1 expressions. Finally, NaB, and less significantly NaP, induced apoptosis in a dose-dependent manner with higher concentrations required for MDA-MB-231 than MCF-7. Our findings elucidate the cyclin-dependent inhibitory effect of NaB and NaP on the progression of different breast cancer subtypes, thus highlighting their therapeutic potential in breast cancer.

Funder

Lebanese University

Lebanese American University President’s Intramural Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3