Revisiting the Immunometabolic Basis for the Metabolic Syndrome from an Immunonutritional View

Author:

Apaza César Jeri12,Cerezo Juan Francisco1ORCID,García-Tejedor Aurora2ORCID,Giménez-Bastida Juan Antonio3ORCID,Laparra-Llopis José Moisés12ORCID

Affiliation:

1. Madrid Institute for Advanced Studies in Food (IMDEA Food), Carretera Cantoblanco 8, 28049 Madrid, Spain

2. Bioactivity and Nutritional Immunology Group (BIOINUT), Valencian International University (VIU), Pintor Sorolla 21, 46002 Valencia, Spain

3. Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain

Abstract

Metabolic syndrome (MetS) implies different conditions where insulin resistance constitutes a major hallmark of the disease. The disease incurs a high risk for the development of cardiovascular complications, and takes its toll in regard to the gut–liver axis (pancreas, primary liver and colorectal)-associated immunity. The modulation of immunometabolic responses by immunonutritional factors (IFs) has emerged as a key determinant of the gut–liver axis’ metabolic and immune health. IFs from plant seeds have shown in vitro and pre-clinical effectiveness primarily in dealing with various immunometabolic and inflammatory diseases. Only recently have immunonutritional studies established the engagement of innate intestinal immunity to effectively control immune alterations in inflamed livers preceding the major features of the MetS. However, integrative analyses and the demonstration of causality between IFs and specific gut–liver axis-associated immunometabolic imbalances for the MetS remain ill-defined in the field. Herein, a better understanding of the IFs with a significant role in the MetS, as well as within the dynamic interplay in the functional differentiation of innate immune key effectors (i.e., monocytes/macrophages), worsening or improving the disease, could be of crucial relevance. The development of an adequate intermediary phenotype of these cells can significantly contribute to maintaining the function of Tregs and innate lymphoid cells for the prevention and treatment of MetS and associated comorbidities.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3