Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis

Author:

Jiang Qiang1,Hu Rong1,Liu Feng1,Huang Feng1,Zhang Lei2ORCID,Zhang Hua1

Affiliation:

1. College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China

Abstract

The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Talent Start-up Funds of Huazhong Agricultural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3