Clinical Utility of Optical Genome Mapping for Improved Cytogenomic Analysis of Gliomas

Author:

Singh Harmanpreet1,Sahajpal Nikhil S.2,Mondal Ashis K.1ORCID,Burke Stephanie L.3,Farmaha Jaspreet1ORCID,Alptekin Ahmet1ORCID,Vashisht Ashutosh1,Jones Kimya1,Vashisht Vishakha1,Kolhe Ravindra1ORCID

Affiliation:

1. Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA

2. Greenwood Genetic Center, Greenwood, SC 29646, USA

3. Clinical and Scientific Affairs, Bionano Genomics, San Diego, CA 92121, USA

Abstract

A glioma is a solid brain tumor which originates in the brain or brain stem area. The diagnosis of gliomas based on standard-of-care (SOC) techniques includes karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), for detecting the pathogenic variants and chromosomal abnormalities. But these techniques do not reveal the complete picture of genetic complexity, thus requiring an alternative technology for better characterization of these tumors. The present study aimed to evaluate the clinical performance and feasibility of using optical genome mapping (OGM) for chromosomal characterization of gliomas. Herein, we evaluated 10 cases of gliomas that were previously characterized by CMA. OGM analysis showed concordance with the results of CMA in identifying the characterized Structural Variants (SVs) in these cases. More notably, it also revealed additional clinically relevant aberrations, demonstrating a higher resolution and sensitivity. These clinically relevant SVs included cryptic translocation, and SVs which are beyond the detection capabilities of CMA. Our analysis highlights the unique capability of OGM to detect all classes of SVs within a single assay, thereby unveiling clinically significant data with a shorter turnaround time. Adopting this diagnostic tool as a standard of care for solid tumors like gliomas shows potential for improving therapeutic management, potentially leading to more personalized and timely interventions for patients.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3