What Remote PPG Oximetry Tells Us about Pulsatile Volume?

Author:

Saiko Gennadi1ORCID

Affiliation:

1. Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

While pulse oximetry using remote photoplethysmography (rPPG) is used in medicine and consumer health, sound theoretical foundations for this methodology are not established. Similarly to traditional pulse oximetry, rPPG oximetry uses two wavelengths to calculate the tissue oxygenation using the so-called ratio-of-ratios, R. However, the relationship between R and tissue oxygenation has not been derived analytically. As such, rPPG oximetry relies mostly on empirical methods. This article aimed to build theoretical foundations for pulse oximetry in rPPG geometry. Using the perturbation approach in diffuse approximation for light propagation in tissues, we obtained an explicit expression of the AC/DC ratio for the rPPG signal. Based on this ratio, the explicit expression for “ratio-of-ratios” was obtained. We have simulated the dependence of “ratio-of-ratios” on arterial blood saturation across a wide range (SaO2 = 70–100%) for several commonly used R/IR light sources (660/780, 660/840, 660/880, and 660/940 nm) and found that the obtained relationship can be modeled by linear functions with an extremely good fit (R2 = 0.98–0.99) for all considered R/IR pairs. Moreover, the location of the pulsatile volume can be extracted from rPPG data. From experimental data, we found that the depth of blood pulsations in the human forehead can be estimated as 0.6 mm on the arterial side, which points to the papillary dermis/subpapillary vascular plexus origin of the pulsatile volume.

Funder

NSERC I2I

NSERC Discovery

Publisher

MDPI AG

Reference23 articles.

1. Pesola, G.R., and Sankari, A. (2024). Oxygenation Status and Pulse Oximeter Analysis. StatPearls [Internet], StatPearls Publishing.

2. Noncontact simultaneous dual wavelength photoplethysmography: A further step toward noncontact pulse oximetry;Humphreys;Rev. Sci. Instrum.,2007

3. NoncontactMonitoring of Blood Oxygen Saturation Using Camera and Dual-Wavelength Imaging System;Shao;IEEE Trans. Biomed. Eng.,2015

4. Calibration of Contactless Pulse Oximetry;Verkruysse;Obstet. Anesth. Dig.,2017

5. Pulse oximetry based on photoplethysmography imaging with red and green light;Verkruysse;J. Clin. Monit. Comput.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3