The Junctophilin-2 Mutation p.(Thr161Lys) Is Associated with Hypertrophic Cardiomyopathy Using Patient-Specific iPS Cardiomyocytes and Demonstrates Prolonged Action Potential and Increased Arrhythmogenicity

Author:

Valtonen Joona1ORCID,Prajapati Chandra1,Cherian Reeja Maria1,Vanninen Sari2,Ojala Marisa1,Leivo Krista3,Heliö Tiina3,Koskenvuo Juha4,Aalto-Setälä Katriina12

Affiliation:

1. Heart Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland

2. Tampere University Heart Hospital, 33520 Tampere, Finland

3. Heart and Lung Center, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland

4. Blueprint Genetics, 02150 Espoo, Finland

Abstract

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases; it is primarily caused by mutations in sarcomeric genes. However, HCM is also associated with mutations in non-sarcomeric proteins and a Finnish founder mutation for HCM in non-sarcomeric protein junctophilin-2 (JPH2) has been identified. This study aimed at assessing the issue of modelling the rare Finnish founder mutation in cardiomyocytes (CMs) differentiated from iPSCs; therefore, presenting the same cardiac abnormalities observed in the patients. To explore the abnormal functions in JPH2-HCM, skin fibroblasts from a Finnish patient with JPH2 p.(Thr161Lys) were reprogrammed into iPSCs and further differentiated into CMs. As a control line, an isogenic counterpart was generated using the CRISPR/Cas9 genome editing method. Finally, iPSC-CMs were evaluated for the morphological and functional characteristics associated with JPH2 mutation. JPH2-hiPSC-CMs displayed key HCM hallmarks (cellular hypertrophy, multi-nucleation, sarcomeric disarray). Moreover, JPH2-hiPSC-CMs exhibit a higher degree of arrhythmia and longer action potential duration associated with slower inactivation of calcium channels. Functional evaluation supported clinical observations, with differences in beating characteristics when compared with isogenic-hiPSC-CMs. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as a translationally relevant platform to study genetic cardiac diseases.

Funder

Finnish academy of Finland

Finnish Foundation for Cardiovascular Research

Sigrid Jusélius Foundation

Pirkanmaa Hospital District

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3