Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis

Author:

Dybska Emilia1ORCID,Nowak Jan Krzysztof1ORCID,Walkowiak Jarosław1ORCID

Affiliation:

1. Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland

Abstract

The runt-related transcription factor 3 (RUNX3) regulates the differentiation of monocytes and their response to inflammation. However, the transcriptomic context of RUNX3 expression in blood monocytes remains poorly understood. We aim to learn about RUNX3 from its relationships within transcriptomes of bulk CD14+ cells in adults. This study used immunomagnetically sorted CD14+ cell gene expression microarray data from the Multi-Ethnic Study of Atherosclerosis (MESA, n = 1202, GSE56047) and the Correlated Expression and Disease Association Research (CEDAR, n = 281, E-MTAB-6667) cohorts. The data were preprocessed, subjected to RUNX3-focused correlation analyses and random forest modeling, followed by the gene ontology analysis. Immunity-focused differential ratio analysis with intermediary inference (DRAIMI) was used to integrate the data with protein–protein interaction network. Correlation analysis of RUNX3 expression revealed the strongest positive association for EVL (rmean = 0.75, pFDR-MESA = 5.37 × 10−140, pFDR-CEDAR = 5.52 × 10−80), ARHGAP17 (rmean = 0.74, pFDR-MESA = 1.13 × 10−169, pFDR-CEDAR = 9.20 × 10−59), DNMT1 (rmean = 0.74, pFDR-MESA = 1.10 × 10−169, pFDR-CEDAR = 1.67 × 10−58), and CLEC16A (rmean = 0.72, pFDR-MESA = 3.51 × 10−154, pFDR-CEDAR = 2.27 × 10−55), while the top negative correlates were C2ORF76 (rmean = −0.57, pFDR-MESA = 8.70 × 10−94, pFDR-CEDAR = 1.31 × 10−25) and TBC1D7 (rmean = −0.55, pFDR-MESA = 1.36 × 10−69, pFDR-CEDAR = 7.81 × 10−30). The RUNX3-associated transcriptome signature was involved in mRNA metabolism, signal transduction, and the organization of cytoskeleton, chromosomes, and chromatin, which may all accompany mitosis. Transcriptomic context of RUNX3 expression in monocytes hints at its relationship with cell growth, shape maintenance, and aspects of the immune response, including tyrosine kinases.

Funder

Polish National Science Center

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3