AMPK Activation as a Protective Mechanism to Restrain Oxidative Stress in the Insulin-Resistant State in Skeletal Muscle of Rat Model of PCOS Subjected to Postnatal Overfeeding

Author:

Mićić Bojana1ORCID,Djordjevic Ana1ORCID,Veličković Nataša1ORCID,Kovačević Sanja1ORCID,Martić Teodora1,Macut Djuro2ORCID,Vojnović Milutinović Danijela1ORCID

Affiliation:

1. Department of Biochemistry, Institute for Biological Research “Siniša Stanković”-National Institute of the Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd, 11060 Belgrade, Serbia

2. Clinic for Endocrinology, Diabetes and Metabolic Diseases University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Doktora Subotića 13, 11000 Belgrade, Serbia

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrinopathy in women of reproductive age, often associated with obesity and insulin resistance. Childhood obesity is an important predisposing factor for the development of PCOS later in life. Being particularly interested in the interplay between prepubertal obesity and hyperandrogenemia, we investigated the effects of early postnatal overfeeding, accomplished by reducing litter size during the period of suckling, on energy sensing and insulin signaling pathways in the gastrocnemius muscle of a rat model of PCOS-induced by 5α-dihydrotestosterone (DHT). The combination of overfeeding and DHT treatment caused hyperinsulinemia and decreased systemic insulin sensitivity. Early postnatal overfeeding induced defects at critical nodes of the insulin signaling pathway in skeletal muscle, which was associated with reduced glucose uptake in the presence of hyperandrogenemia. In this setting, under a combination of overfeeding and DHT treatment, skeletal muscle switched to mitochondrial β-oxidation of fatty acids, resulting in oxidative stress and inflammation that stimulated AMP-activated protein kinase (AMPK) activity and its downstream targets involved in mitochondrial biogenesis and antioxidant protection. Overall, a combination of overfeeding and hyperandrogenemia resulted in a prooxidative and insulin-resistant state in skeletal muscle. This was accompanied by the activation of AMPK, which could represent a potential therapeutic target in insulin-resistant PCOS patients.

Funder

Ministry of Science, Technological Development and Innovations of the Republic of Serbia

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3