Polydopamine Coating of Graphitic Carbon Nitride, g-C3N4, Improves Biomedical Application

Author:

Sahiner Mehtap1,Demirci Sahin2,Sahiner Nurettin23ORCID

Affiliation:

1. Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University Terzioglu Campus, 17100 Canakkale, Turkey

2. Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University Terzioglu Campus, 17100 Canakkale, Turkey

3. Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA

Abstract

Graphitic carbon nitride (g-C3N4) is an intriguing nanomaterial that exhibits photoconductive fluorescence properties under UV–visible light. Dopamine (DA) coating of g-C3N4 prepared from melamine was accomplished via self-polymerization of DA as polydopamine (PDA). The g-C3N4 was coated with PDA 1, 3, and 5 times repeatedly as (PDA@g-C3N4) in tris buffer at pH 8.5. As the number of PDA coatings was increased on g-C3N4, the peak intensity at 1512 cm−1 for N–H bending increased. In addition, the increased weight loss values of PDA@g-C3N4 structures at 600 °C from TGA thermograms confirmed that the coating was accomplished. The band gap of g-C3N4, 2.72 eV, was reduced to 0.87 eV after five coatings with PDA. A pristine g-C3N4 was found to have an isoelectric point (IEP) of 4.0, whereas the isoelectric points of 1PDA@g-C3N4 and 3PDA@g-C3N4 are close to each other at 3.94 and 3.91, respectively. On the other hand, the IEP of 5PDA@g-C3N4 was determined at pH 5.75 assuming complete coating with g-C3N4. The biocompatibility of g-C3N4 and PDA@g-C3N4 against L929 fibroblast cell lines revealed that all PDA@g-C3N4 coatings were found to be biocompatible up to a 1000 mg/mL concentration, establishing that PDA coatings did not adversely affect the biocompatibility of the composite materials. In addition, PDA@g-C3N4 was screened for antioxidant potential via total phenol content (TPC) and total flavonoid content assays and it was found that PDA@g-C3N4 has recognizable TPC values and increased linearly with an increased number of PDA coatings. Furthermore, blood compatibility of pristine g-C3N4 is enhanced considerably upon PDA coating, affirmed by hemolysis and the blood clotting index%. Additionally, α-glucosidase inhibitory properties of PDA@g-C3N4 structures revealed that 67.6 + 9.8% of this enzyme was evenly inhibited by 3PDA@g-C3N4 structure.

Funder

Canakkale Onsekiz Mart University Scientific Research Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3