Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study

Author:

Nadal Enrique1ORCID,Benito Esther2ORCID,Ródenas-Navarro Ana María3,Palanca Ana34ORCID,Martinez-Hervas Sergio2345ORCID,Civera Miguel34,Ortega Joaquín467ORCID,Alabadi Blanca234ORCID,Piqueras Laura248,Ródenas Juan José1ORCID,Real José T.2345

Affiliation:

1. Instituto Universitario de Ingeniería Mecánica y Biomecánica (I2MB), Universitat Politècnica de València, 46022 Valencia, Spain

2. CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain

3. Endocrinology and Nutrition Service, Clinical University Hospital of Valencia, 46010 Valencia, Spain

4. INCLIVA Biomedical Research Institute, 46010 Valencia, Spain

5. Department of Medicine, University of Valencia, 46010 Valencia, Spain

6. General Surgery Service, University Hospital of Valencia, 46010 Valencia, Spain

7. Department of Surgery, University of Valencia, 46010 Valencia, Spain

8. Department of Pharmacology, University of Valencia, 46010 Valencia, Spain

Abstract

Roux-en-Y gastric bypass (RYGB) is a treatment for severe obesity. However, many patients have insufficient total weight loss (TWL) after RYGB. Although multiple factors have been involved, their influence is incompletely known. The aim of this exploratory study was to evaluate the feasibility and reliability of the use of machine learning (ML) techniques to estimate the success in weight loss after RYGP, based on clinical, anthropometric and biochemical data, in order to identify morbidly obese patients with poor weight responses. We retrospectively analyzed 118 patients, who underwent RYGB at the Hospital Clínico Universitario of Valencia (Spain) between 2013 and 2017. We applied a ML approach using local linear embedding (LLE) as a tool for the evaluation and classification of the main parameters in conjunction with evolutionary algorithms for the optimization and adjustment of the parameter model. The variables associated with one-year postoperative %TWL were obstructive sleep apnea, osteoarthritis, insulin treatment, preoperative weight, insulin resistance index, apolipoprotein A, uric acid, complement component 3, and vitamin B12. The model correctly classified 71.4% of subjects with TWL < 30% although 36.4% with TWL ≥ 30% were incorrectly classified as “unsuccessful procedures”. The ML-model processed moderate discriminatory precision in the validation set. Thus, in severe obesity, ML-models can be useful to assist in the selection of patients before bariatric surgery.

Funder

Instituto de Salud Carlos III

Conselleria de Educación, Cultura y Deporte, Generalitat Valenciana

Ministerio de Economía, Industria y Competitividad

Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación

Fondo Europeo de Desarrollo Regional

CIBER de Diabetes y Enfermedades Metabólicas Asociadas

Publisher

MDPI AG

Reference48 articles.

1. Prevalence of general and abdominal obesity in the adult population of Spain, 2008–2010: The ENRICA study;Graciani;Obes. Rev.,2012

2. Prevalence of general obesity and abdominal obesity in the Spanish adult population (aged 25–64 years) 2014–2015: The ENPE Study;Rev. Esp. Cardiol. Engl. Ed.,2016

3. Quality criteria in bariatric surgery: Consensus review and recommendations of the Spanish Association of Surgeons and the Spanish Society of Bariatric Surgery;Ibarzabal;Cir. Esp.,2017

4. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016;Hales;JAMA,2018

5. (2020, July 12). Global Report on Diabetes. World Health Organization. Available online: https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=DC88DB2E9F535A94B01EFC11C9FE6D96?sequence=1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3