Abstract
Innovative drug-delivery systems offer a unique approach to effectively provide therapeutic drug dose over the needed time to achieve better tissue protection and enhanced recovery. The hypothesis of the current study was to test the antioxidant and anti-inflammatory effects of genistein and nanofibers on the spinal cord tissue following experimental spinal cord injury (SCI). Rats were treated post SCI with genistein that is loaded on chitosan/polyvinyl alcohol (CS/PVA) nanofibers as an implantable drug-delivery system. SCI caused marked oxidative damage and inflammation, as is evident by the reduction in the super oxide dismutase (SOD) activity and the level of interleukin-10 (IL-10) in injured spinal cord tissue, as well as the significant increase in the levels of nitric oxide (NO), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α). Treatment of rats post SCI with genistein and CS/PVA nanofibers improved most of the above-mentioned biochemical parameters and shifted them toward the control group values. Genistein induced an increase in the activity of SOD and the level of IL-10, while causing a decrease in NO, MDA, and TNF-α in injured spinal cord tissue. Genistein and CS/PVA nanofibers provide a novel combination for treating inflammatory nervous tissue conditions, especially when combined as an implantable drug-delivery system.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献