Mycobacterium tuberculosis Affects Protein and Lipid Content of Circulating Exosomes in Infected Patients Depending on Tuberculosis Disease State

Author:

Biadglegne FantahunORCID,Schmidt Johannes R.ORCID,Engel Kathrin M.ORCID,Lehmann JörgORCID,Lehmann Robert T.,Reinert AnjaORCID,König BrigitteORCID,Schiller Jürgen,Kalkhof StefanORCID,Sack UlrichORCID

Abstract

Tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb), is still one of the deadliest infectious diseases. Understanding how the host and pathogen interact in active TB will have a significant impact on global TB control efforts. Exosomes are increasingly recognized as a means of cell-to-cell contact and exchange of soluble mediators. In the case of TB, exosomes are released from the bacillus and infected cells. In the present study, a comprehensive lipidomics and proteomics analysis of size exclusion chromatography-isolated plasma-derived exosomes from patients with TB lymphadenitis (TBL) and treated as well as untreated pulmonary TB (PTB) was performed to elucidate the possibility to utilize exosomes in diagnostics and knowledge building. According to our findings, exosome-derived lipids and proteins originate from both the host and Mtb in the plasma of active TB patients. Exosomes from all patients are mostly composed of sphingomyelins (SM), phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols (TAG), and cholesterylesters. Relative proportions of, e.g., SMs and TAGs, vary depending on the disease or treatment state and could be linked to Mtb pathogenesis and dormancy. We identified three proteins of Mtb origin: DNA-directed RNA polymerase subunit beta (RpoC), Diacyglycerol O-acyltransferase (Rv2285), and Formate hydrogenase (HycE), the latter of which was discovered to be differently expressed in TBL patients. Furthermore, we discovered that Mtb infection alters the host protein composition of circulating exosomes, significantly affecting a total of 37 proteins. All TB patients had low levels of apolipoproteins, as well as the antibacterial proteins cathelicidin, Scavenger Receptor Cysteine Rich Family Member (SSC5D), and Ficolin 3 (FCN3). When compared to healthy controls, the protein profiles of PTB and TBL were substantially linked, with 14 proteins being co-regulated. However, adhesion proteins (integrins, Intercellular adhesion molecule 2 (ICAM2), CD151, Proteoglycan 4 (PRG4)) were shown to be more prevalent in PTB patients, while immunoglobulins, Complement component 1r (C1R), and Glutamate receptor-interacting protein 1 (GRIP1) were found to be more abundant in TBL patients, respectively. This study could confirm findings from previous reports and uncover novel molecular profiles not previously in focus of TB research. However, we applied a minimally invasive sampling and analysis of circulating exosomes in TB patients. Based on the findings given here, future studies into host–pathogen interactions could pave the way for the development of new vaccines and therapies.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3