Novel Translational Read-through–Inducing Drugs as a Therapeutic Option for Shwachman-Diamond Syndrome

Author:

Bezzerri ValentinoORCID,Lentini LauraORCID,Api Martina,Busilacchi Elena Marinelli,Cavalieri VincenzoORCID,Pomilio Antonella,Diomede FrancescaORCID,Pegoraro Anna,Cesaro SimoneORCID,Poloni Antonella,Pace AndreaORCID,Trubiani OrianaORCID,Lippi GiuseppeORCID,Pibiri IvanaORCID,Cipolli Marco

Abstract

Shwachman-Diamond syndrome (SDS) is one of the most commonly inherited bone marrow failure syndromes (IBMFS). In SDS, bone marrow is hypocellular, with marked neutropenia. Moreover, SDS patients have a high risk of developing myelodysplastic syndrome (MDS), which in turn increases the risk of acute myeloid leukemia (AML) from an early age. Most SDS patients are heterozygous for the c.183-184TA>CT (K62X) SBDS nonsense mutation. Fortunately, a plethora of translational read-through inducing drugs (TRIDs) have been developed and tested for several rare inherited diseases due to nonsense mutations so far. The authors previously demonstrated that ataluren (PTC124) can restore full-length SBDS protein expression in bone marrow stem cells isolated from SDS patients carrying the nonsense mutation K62X. In this study, the authors evaluated the effect of a panel of ataluren analogues in restoring SBDS protein resynthesis and function both in hematological and non-hematological SDS cells. Besides confirming that ataluren can efficiently induce SBDS protein re-expression in SDS cells, the authors found that another analogue, namely NV848, can restore full-length SBDS protein synthesis as well, showing very low toxicity in zebrafish. Furthermore, NV848 can improve myeloid differentiation in bone marrow hematopoietic progenitors, enhancing neutrophil maturation and reducing the number of dysplastic granulocytes in vitro. Therefore, these findings broaden the possibilities of developing novel therapeutic options in terms of nonsense mutation suppression for SDS. Eventually, this study may act as a proof of concept for the development of similar approaches for other IBMFS caused by nonsense mutations.

Funder

Italian Ministry of Health

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3