Comparative EPR Studies on the Influence of Genistein on Free Radicals in Non-Irradiated and UV-Irradiated MCF7, T47D and MDA-MB-231 Breast Cancer Cells

Author:

Jurzak Magdalena1ORCID,Ramos Paweł2ORCID,Pilawa Barbara2,Bednarek Ilona Anna1ORCID

Affiliation:

1. Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland

2. Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland

Abstract

The antioxidant activity and the association of genistein with carcinogenesis are widely documented. Few studies directly measure the number of free radicals generated in cells, either during the action of factors stimulating their formation, e.g., ultraviolet (UV), or after exposure to antioxidants. The most suitable method for analysing free radicals is electron paramagnetic resonance (EPR) spectroscopy. The EPR method detects a paramagnetic centre with a single electron. Antioxidants neutralize free radicals, therefore, EPR analysis of antioxidant efficacy is as valuable and important as studying the paramagnetic centres of radicals. The aim of the study was to determine the influence of genistein on free radicals basal level and after UV exposure in breast cancer cell lines MCF7, T47D and MDA-MB-231 cell lines. The impact of genistein on cell viability was investigated at concentrations of 0.37 μM, 3.7 μM, 37 μM and 370 μM. Genistein at a concentration of 370 μM revealed a cytotoxic effect on the cells of all three tested breast cancer lines. Genistein at a concentration of 0.37 μM showed no significant effect on the cell viability of all tested breast cancer lines. Therefore, cell proliferation and antioxidant properties were examined using genistein at a concentration of 0.37 μM and 37 μM. X-band (9.3 GHz) EPR spectra of three different types of breast cancer cells (ER-positive, PR-positive and HER-2 negative: MCF7 and T47D and triple-negative MDA-MB-231) were compared. UV irradiation was used as a factor to generate free radicals in cells. The effect of free radical interactions with the antioxidant genistein was tested for non-UV-irradiated (corresponding to the basal level of free radicals in cells) and UV-irradiated cells. The levels of free radicals in the non-irradiated cells studied increased in the following order in breast cancer cells: T47D < MDA-MB-231 < MCF7 and UV-irradiated breast cancer cells: MDA-MB-231 < MCF7 < T47D. UV-irradiation altered free radical levels in all control and genistein-cultured cells tested. UV irradiation caused a slight decrease in the amount of free radicals in MCF7 cells. A strong decrease in the amount of free radicals was observed in UV-irradiated MDA-MB-231 breast cancer cells. The amount of free radicals in T47D cancer cells increased after UV irradiation. Genistein decreased the amount of free radicals in non-irradiated and UV-irradiated MCF7 cells, and only a weak effect of genistein concentrations was reported. Genistein greatly decreased the amount of free radicals in UV-irradiated T47D cancer cells cultured with genistein at a concentration of 3.7 μM. The effect of genistein was negligible in the other samples. Genistein at a concentration of 3.7 μM decreased the amount of free radicals in non-irradiated MDA-MB-231 cancer cells, but genistein at a concentration of 37 μM did not change the amount of free radicals in these cells. An increase in the amount of free radicals in UV-irradiated MDA-MB-231 cancer cells was observed with increasing genistein concentration. The antioxidant efficacy of genistein as a potential plant-derived agent supporting the treatment of various cancers may be determined by differences in signalling pathways that are characteristic of breast cancer cell line subtypes and differences in activation of oxidative stress response pathways.

Funder

Medical University of Silesia, Katowice, Poland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Pathways of Genistein Activity in Breast Cancer Cells;International Journal of Molecular Sciences;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3