Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines

Author:

Xie Xuemei1,Lee Jangsoon1,Fuson Jon A.1,Liu Huey1ORCID,Iwase Toshiaki1ORCID,Yun Kyuson2,Margain Cori3,Tripathy Debu1ORCID,Ueno Naoto T.14ORCID

Affiliation:

1. Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

2. Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA

3. Empiri Inc., Houston, TX 77054, USA

4. Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA

Abstract

Background: Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer, and current treatments are only partially effective in disease control. More effective combination approaches are needed to improve the survival of TNBC patients. Eribulin mesylate, a non-taxane microtubule dynamics inhibitor, is approved by the U.S. Food and Drug Administration to treat metastatic breast cancer after at least two previous chemotherapeutic regimens. However, eribulin as a single agent has limited therapeutic efficacy against TNBC. Methods: High-throughput kinome library RNAi screening, Ingenuity Pathway Analysis, and STRING analysis were performed to identify target kinases for combination with eribulin. The identified combinations were validated using in vivo and ex vivo proliferation assays. Results: We identified 135 potential kinase targets whose inhibition enhanced the antiproliferation effect of eribulin in TNBC cells, with the PI3K/Akt/mTOR and the MAPK/JNK pathways emerging as the top candidates. Indeed, copanlisib (pan-class I PI3K inhibitor), everolimus (mTOR inhibitor), trametinib (MEK inhibitor), and JNK-IN-8 (pan-JNK inhibitor) produced strong synergistic antiproliferative effects when combined with eribulin, and the PI3K and mTOR inhibitors had the most potent effects in vitro. Conclusions: Our data suggest a new strategy of combining eribulin with PI3K or mTOR inhibitors to treat TNBC.

Funder

Morgan Welch Inflammatory Breast Cancer Research Program

State of Texas Rare and Aggressive Breast Cancer Research Program

NIH/NCI

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3