Bag-1 Protects Nucleus Pulposus Cells from Oxidative Stress by Interacting with HSP70

Author:

Suyama Kaori1ORCID,Sakai Daisuke2ORCID,Hayashi Shogo1ORCID,Qu Ning1ORCID,Terayama Hayato1ORCID,Kiyoshima Daisuke1ORCID,Nagahori Kenta1,Watanabe Masahiko2ORCID

Affiliation:

1. Department of Anatomy and Cellular Biology, Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan

2. Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan

Abstract

Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional prosurvival protein that binds to several intracellular targets and promotes cell survival. HSP70 and Raf-1 are important targets of Bag-1; however, the protective function of Bag-1 in nucleus pulposus (NP) cells remains unclear. In this study, we determined the effects of Bag-1 on NP cells under oxidative stress induced by treatment with hydrogen peroxide (H2O2). We found that Bag-1 was bound to HSP70, but Bag-1–Raf1 binding did not occur in NP cells. Bag-1 overexpression in NP cells enhanced cell viability and mitochondrial function and significantly suppressed p38/MAPKs phosphorylation during oxidative stress, although NP cells treated with a Bag-1 C-terminal inhibitor, which is the binding site of HSP70 and Raf-1, decreased cell viability and mitochondrial function during oxidative stress. Furthermore, the phosphorylation of the ERK/MAPKs was significantly increased in Bag-1 C-terminal inhibitor-treated NP cells without H2O2 treatment but did not change with H2O2 exposure. The phosphorylation of Raf-1 was not influenced by Bag-1 overexpression or Bag-1 C-terminal binding site inhibition. Overall, the results suggest that Bag-1 preferentially interacts with HSP70, rather than Raf-1, to protect NP cells against oxidative stress.

Funder

2021 Tokai University School of Medicine Research Aid

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3