Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence

Author:

Allen Ben1

Affiliation:

1. Department of Psychology, University of Kansas, Lawrence, KS 66045, USA

Abstract

Deep brain stimulation is a treatment that controls symptoms by changing brain activity. The complexity of how to best treat brain dysfunction with deep brain stimulation has spawned research into artificial intelligence approaches. Machine learning is a subset of artificial intelligence that uses computers to learn patterns in data and has many healthcare applications, such as an aid in diagnosis, personalized medicine, and clinical decision support. Yet, how machine learning models make decisions is often opaque. The spirit of explainable artificial intelligence is to use machine learning models that produce interpretable solutions. Here, we use topic modeling to synthesize recent literature on explainable artificial intelligence approaches to extracting domain knowledge from machine learning models relevant to deep brain stimulation. The results show that patient classification (i.e., diagnostic models, precision medicine) is the most common problem in deep brain stimulation studies that employ explainable artificial intelligence. Other topics concern attempts to optimize stimulation strategies and the importance of explainable methods. Overall, this review supports the potential for artificial intelligence to revolutionize deep brain stimulation by personalizing stimulation protocols and adapting stimulation in real time.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Reference58 articles.

1. Stimulation therapies for Parkinson’s disease: Over the past two decades;Benabid;Bull. Acad. Natl. Med.,2010

2. Deep Brain Stimulation: Current Challenges and Future Directions;Lozano;Nat. Rev. Neurol.,2019

3. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials;Chen;IEEE Trans. Neural Syst. Rehabil. Eng.,2019

4. Explanation and Inference: Mechanistic and Functional Explanations Guide Property Generalization;Lombrozo;Front. Hum. Neurosci.,2014

5. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review;Craik;J. Neural Eng.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3