Platelet Lysate Therapy Attenuates Hypoxia Induced Apoptosis in Human Uroepithelial SV-HUC-1 Cells through Regulating the Oxidative Stress and Mitochondrial-Mediated Intrinsic Apoptotic Pathway

Author:

Wu Zong-Sheng12ORCID,Luo Hou-Lun12ORCID,Chuang Yao-Chi123ORCID,Lee Wei-Chia1ORCID,Wang Hung-Jen12ORCID,Chancellor Michael B.4

Affiliation:

1. Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

2. Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan

3. School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 833, Taiwan

4. Beaumont Health System, William Beaumont School of Medicine, Oakland University, Royal Oak, MI 48073, USA

Abstract

(1) Background: Ischemia/hypoxia plays an important role in interstitial cystitis/bladder pain syndrome (IC/BPS). Platelet-rich plasma (PRP) has been shown to relieve symptoms of IC/BPS by regulating new inflammatory processes and promoting tissue repair. However, the mechanism of action of PRP on the IC/BPS bladder remains unclear. We hypothesize that PRP might protect the urothelium during ischemia/hypoxia by decreasing apoptosis. (2) Methods: SV-HUC-1 cells were cultured under hypoxia for 3 h and treated with or without 2% PLTGold® human platelet lysate (PL). Cell viability assays using trypan blue cell counts were examined. Molecules involved in the mitochondrial-mediated intrinsic apoptosis pathway, HIF1α, and PCNA were assessed by Western blot analysis. The detection of apoptotic cells and CM-H2DCFDA, an indicator of reactive oxygen species (ROS) in cells, was analyzed by flow cytometry. (3) Results: After 3 h of hypoxia, the viability of SV-HUC-1 cells and expression of PCNA were significantly decreased, and the expression of ROS, HIF1α, Bax, cytochrome c, caspase 3, and early apoptosis rate were significantly increased, all of which were attenuated by PL treatment. The addition of the antioxidant N-acetyl-L-cysteine (NAC) suppressed the levels of ROS induced by hypoxia, leading to inhibition of late apoptosis. (4) Conclusions: PL treatment could potentially protect the urothelium from apoptosis during ischemia/hypoxia by a mechanism that modulates the expression of HIF1α, the mitochondria-mediated intrinsic apoptotic pathway, and reduces ROS.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3