Knocking-Down CD147/EMMPRIN Expression in CT26 Colon Carcinoma Forces the Cells into Cellular and Angiogenic Dormancy That Can Be Reversed by Interactions with Macrophages

Author:

Feigelman Gabriele12,Simanovich Elina1,Brockmeyer Phillipp3ORCID,Rahat Michal A.12ORCID

Affiliation:

1. Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel

2. Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel

3. Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37073 Göttingen, Germany

Abstract

Metastasis in colorectal cancer is responsible for most of the cancer-related deaths. For metastasis to occur, tumor cells must first undergo the epithelial-to-mesenchymal transition (EMT), which is driven by the transcription factors (EMT-TFs) Snail, Slug twist1, or Zeb1, to promote their migration. In the distant organs, tumor cells may become dormant for years, until signals from their microenvironment trigger and promote their outgrowth. Here we asked whether CD147/EMMPRIN controls entry and exit from dormancy in the aggressive and proliferative (i.e., non-dormant) CT26 mouse colon carcinoma cells, in its wild-type form (CT26-WT cells). To this end, we knocked down EMMPRIN expression in CT26 cells (CT26-KD), and compared their EMT and cellular dormancy status (e.g., proliferation, pERK/pP38 ratio, vimentin expression, expression of EMT-TFs and dormancy markers), and angiogenic dormancy (e.g., VEGF and MMP-9 secretion, healing of the wounded bEND3 mouse endothelial cells), to the parental cells (CT26-WT). We show that knocking-down EMMPRIN expression reduced the pERK/pP38 ratio, enhanced the expression of vimentin, the EMT-TFs and the dormancy markers, and reduced the proliferation and angiogenic potential, cumulatively indicating that cells were pushed towards dormancy. When macrophages were co-cultured with both types of CT26 cells, the CT26-WT cells increased their angiogenic potential, but did not change their proliferation, state of EMT, or dormancy, whereas the CT26-KD cells exhibited values mostly similar to those of the co-cultured CT26-WT cells. Addition of recombinant TGFβ or EMMPRIN that simulated the presence of macrophages yielded similar results. Combinations of low concentrations of TGFβ and EMMPRIN had a minimal additive effect only in the CT26-KD cells, suggesting that they work along the same signaling pathway. We conclude that EMMPRIN is important as a gatekeeper that prevents cells from entering a dormant state, and that macrophages can promote an exit from dormancy.

Funder

Israel Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3