Ligand-Receptor Interactions of Lamivudine: A View from Charge Density Study and QM/MM Calculations

Author:

Korlyukov Alexander A.1ORCID,Stash Adam. I.1ORCID,Romanenko Alexander R.1,Trzybiński Damian2,Woźniak Krzysztof2ORCID,Vologzhanina Anna V.1ORCID

Affiliation:

1. A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., Moscow 19334, Russia

2. Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland

Abstract

The nature and strength of interactions for an anti-HIV drug, Lamivudine, were studied in a pure crystal form of the drug and the ligand–receptor complexes. High-resolution single-crystal X-ray diffraction studies of the tetragonal polymorph allowed the drug’s experimental charge density distribution in the solid state to be obtained. The QM/MM calculations were performed for a simplified model of the Lamivudine complex with deoxycytidine kinase (two complexes with different binding modes) to reconstruct the theoretical charge density distribution. The peculiarities of intramolecular interactions were compared with previously reported data for an isolated molecule. Intermolecular interactions were revealed within the quantum theory of ‘Atoms in Molecules’, and their contributions to the total crystal energy or ligand–receptor binding energy were evaluated. It was demonstrated that the crystal field effect weakened the intramolecular interactions. Overall, the energies of intermolecular interactions in ligand–receptor complexes (320.1–394.8 kJ/mol) were higher than the energies of interactions in the crystal (276.9 kJ/mol) due to the larger number of hydrophilic interactions. In contrast, the sum of the energies of hydrophobic interactions was found to be unchanged. It was demonstrated by means of the Voronoi tessellation that molecular volume remained constant for different molecular conformations (250(13) Å3) and increased up to 399 Å3 and 521(30) Å3 for the Lamivudine phosphate and triphosphate.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3