Affiliation:
1. Beijing Chao-Yang Hospital Department of Oncology, Capital Medical University, 8 Gongren Tiyuchang Nanlu Road, Chaoyang Dist., Beijing 100020, China
Abstract
Objective: Epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) is a first-line treatment for lung adenocarcinoma with EGFR-sensitive mutations, but acquired resistance to EGFR-TKIs remains a problem in clinical practice. The development of epithelial–mesenchymal transition (EMT) is a critical mechanism that induces acquired resistance to TKIs. Reversing acquired resistance to EGFR-TKIs through targeting the key molecules driving EMT provides an alternative choice for patients. We, therefore, aimed to explore the role of doublecortin-like kinase 1 (DCLK1) as an EMT driver gene in the acquired resistance of lung adenocarcinoma to EGFR-TKIs. Methods: The IC50 of Gefitinib or Osimertinib in PC9/HCC827 cells was measured using a cell counting kit-8 (CCK8) assay. The expression levels of EMT-related genes in PC9 and HCC827 cells were detected using RT-PCR and Western blot. Cell migration and invasion abilities were assessed via a transwell assay. For the in vivo experiments, PC9 cells were subcutaneously injected into BALB/c nude mice to form tumors. Upon harvesting, tumor tissues were retained for RT-PCR, Western blot, and polychromatic fluorescence staining to detect biomarker changes in the EMT process. Results: Gefitinib-resistant PC9 (PC9/GR) and Osimertinib-resistant HCC827 (HCC827/OR) cells showed remarkable activation of EMT and enhanced migration and invasion abilities compared to TKI-sensitive cells. In addition, DCLK1 expression was markedly increased in EGFR-TKI-resistant lung adenocarcinoma cells. The targeted knockout of DCLK1 effectively reversed the EMT phenotype in TKI-resistant cells and improved EGFR-TKI sensitivity, which was further validated by the in vivo experiments. Conclusions: DCLK1 facilitates acquired resistance to EGFR-TKI in lung adenocarcinoma by inducting EMT and accelerating the migration and invasion abilities of TKI-resistant cells.
Funder
Beijing Chaoyang Hospital
Natural Science Foundation of Beijing Municipality
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)