Restricted Feeding Resets the Peripheral Clocks of the Digestive System

Author:

Nakazawa Kazuo1,Matsuo Minako2,Kimura Naobumi2,Numano Rika12

Affiliation:

1. Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan

2. Institute for Research on Next-Generation Semiconductor and Sensing Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan

Abstract

All organisms maintain an internal clock that matches the Earth’s rotation over a period of 24 h, known as the circadian rhythm. Previously, we established Period1 luciferase (Per1::luc) transgenic (Tg) mice in order to monitor the expression rhythms of the Per1 clock gene in each tissue in real time using a bioluminescent reporter. The Per1 gene is a known key molecular regulator of the mammalian clock system in the autonomous central clock in the suprachiasmatic nucleus (SCN), and the peripheral tissues. Per1::luc Tg mice were used as a biosensing system of circadian rhythms. They were maintained by being fed ad lib (FF) and subsequently subjected to 4 hour (4 h) restricted feeding (RF) during the rest period under light conditions in order to examine whether the peripheral clocks of different parts in the digestive tract could be entrained. The peak points of the bioluminescent rhythms in the Per1::luc Tg mouse tissue samples were analyzed via cosine fitting. The bioluminescent rhythms of the cultured peripheral tissues of the esophagus and the jejunum exhibited phase shift from 5 to 11 h during RF, whereas those of the SCN tissue remained unchanged for 7 days during RF. We examined whether RF for 4 h during the rest period in light conditions could reset the activity rhythms, the central clock in the SCN, and the peripheral clock in the different points in the gastrointestinal tract. The fasting signals during RF did not entrain the SCN, but they did entrain each peripheral clock of the digestive system, the esophagus, and the jejunum. During RF for 7 days, the peak time of the esophagus tended to return to that of the FF control, unlike that of the jejunum; hence, the esophagus was regulated more strongly under the control of the cultured SCN compared to the jejunum. Thus, the peripheral clocks of the digestive system can entrain their molecular clock rhythms via RF-induced fasting signals in each degree, independently from the SCN.

Funder

TechnoPro R&D Company

Japan Society for the Promotion of Science from MEXT/JSPS

Grant for Science & Technology Innovation from Toyohashi University of Technology

TechnoPro, Inc., TechnoPro R&D Company

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3