A Deep Learning Approach for Prognostic Evaluation of Lung Adenocarcinoma Based on Cuproptosis-Related Genes

Author:

Liang Pengchen12,Chen Jianguo3,Yao Lei2,Hao Zezhou4,Chang Qing1

Affiliation:

1. Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China

2. School of Microelectronics, Shanghai University, Shanghai 201800, China

3. School of Software Engineering, Sun Yat-sen University, Zhuhai 528478, China

4. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Lung adenocarcinoma represents a significant global health challenge. Despite advances in diagnosis and treatment, the prognosis remains poor for many patients. In this study, we aimed to identify cuproptosis-related genes and to develop a deep neural network model to predict the prognosis of lung adenocarcinoma. We screened differentially expressed genes from The Cancer Genome Atlas data through differential analysis of cuproptosis-related genes. We then used this information to establish a prognostic model using a deep neural network, which we validated using data from the Gene Expression Omnibus. Our deep neural network model incorporated nine cuproptosis-related genes and achieved an area under the curve of 0.732 in the training set and 0.646 in the validation set. The model effectively distinguished between distinct risk groups, as evidenced by significant differences in survival curves (p < 0.001), and demonstrated significant independence as a standalone prognostic predictor (p < 0.001). Functional analysis revealed differences in cellular pathways, the immune microenvironment, and tumor mutation burden between the risk groups. Furthermore, our model provided personalized survival probability predictions with a concordance index of 0.795 and identified the drug candidate BMS-754807 as a potentially sensitive treatment option for lung adenocarcinoma. In summary, we presented a deep neural network prognostic model for lung adenocarcinoma, based on nine cuproptosis-related genes, which offers independent prognostic capabilities. This model can be used for personalized predictions of patient survival and the identification of potential therapeutic agents for lung adenocarcinoma, which may ultimately improve patient outcomes.

Funder

Shanghai University of Traditional Chinese Medicine

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3