Abstract
Pancreatic cancer (PC) begins within the organ of the pancreas, which produces digestive enzymes, and is one of the formidable cancers for which appropriate treatment strategies are urgently needed. Autophagy occurs in the many chambers of PC tissue, including cancer cells, cancer-related fibroblasts, and immune cells, and can be fine-tuned by various promotive and suppressive signals. Consequently, the impacts of autophagy on pancreatic carcinogenesis and progression depend greatly on its stage and conditions. Autophagy inhibits the progress of preneoplastic damage during the initial phase. However, autophagy encourages tumor formation during the development phase. Several studies have reported that both a tumor-promoting and a tumor-suppressing function of autophagy in cancer that is likely cell-type dependent. However, autophagy is dispensable for pancreatic ductal adenocarcinoma (PDAC) growth, and clinical trials with autophagy inhibitors, either alone or in combination with other therapies, have had limited success. Autophagy’s dual mode of action makes it therapeutically challenging despite autophagy inhibitors providing increased longevity in medical studies, highlighting the need for a more rigorous review of current findings and more precise targeting strategies. Indeed, the role of autophagy in PC is complicated, and numerous factors must be considered when transitioning from bench to bedside. In this review, we summarize the evidence for the tumorigenic and protective role of autophagy in PC tumorigenesis and describe recent advances in the understanding of how autophagy may be regulated and controlled in PDAC.
Funder
National Research Foundation of Korea
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)