Reversal of Azole Resistance in Candida albicans by Human Neutrophil Peptide

Author:

Khan Mohammad Imran12ORCID,Choudhry Hani12ORCID,Jahan Sadaf3ORCID,Rather Irfan A.45ORCID

Affiliation:

1. Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 15341, Saudi Arabia

4. Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

5. Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan-si 38541, Gyeongsanbuk-do, Republic of Korea

Abstract

With the spread of AIDS and the increase in immunocompromised patients, multi-drug-resistant fungal infections have become a serious concern among clinicians, predominantly in the developing world. Therefore, developing novel strategies and new drugs is essential to overcome drug resistance in fungal pathogens. Antimicrobial peptides of human origin have been investigated as a potential treatment against Candida infections. In this study, human neutrophil peptide (HNP) was tested for its antifungal activity alone and in combination with fluconazole (FLC) against azole-susceptible and resistant C. albicans isolates, following CLSI guidelines. Susceptibility and combination interactions were also confirmed by MUSE cell viability assay and isobolograms for synergistic combinations, respectively. The effect of HNP on biofilm inhibition was determined spectrophotometrically and microscopically. Drug susceptibility testing showed minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) ranging from 7.813 to 62.5 µg/mL and 15.625 to 250 µg/mL against all the tested C. albicans strains. The combination activity of FLC with HNP exhibited synergistic and additive interactions in 43% of each and indifferent interaction in 14%, and none of the combinations showed antagonistic interaction. Furthermore, HNB inhibited biofilm formation in all the tested C. albicans isolates. At the respective MICs, HNP exhibited inhibitory effects on the activity of the drug efflux pumps and their genes. These results warrant the application of HNP as a mono- or combination therapy with FLC to treat azole-resistant C. albicans.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia and King Abdulaziz University DSR

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3