Exploring the Phospholipid Transport Mechanism of ATP8A1-CDC50

Author:

Zhang Honghui1ORCID,Zhang Yue12,Xu Peiyi1,Bai Chen13

Affiliation:

1. Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China

2. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

3. Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China

Abstract

P4-ATPase translocates lipids from the exoplasmic to the cytosolic plasma membrane leaflet to maintain lipid asymmetry distribution in eukaryotic cells. P4-ATPase is associated with severe neurodegenerative and metabolic diseases such as neurological and motor disorders. Thus, it is important to understand its transport mechanism. However, even with progress in X-ray diffraction and cryo-electron microscopy techniques, it is difficult to obtain the dynamic information of the phospholipid transport process in detail. There are still some problems required to be resolved: (1) when does the lipid transport happen? (2) How do the key residues on the transmembrane helices contribute to the free energy of important states? In this work, we explore the phospholipid transport mechanism using a coarse-grained model and binding free energy calculations. We obtained the free energy landscape by coupling the protein conformational changes and the phospholipid transport event, taking ATP8A1-CDC50 (the typical subtype of P4-ATPase) as the research object. According to the results, we found that the phospholipid would bind to the ATP8A1-CDC50 at the early stage when ATP8A1-CDC50 changes from E2P to E2Pi-PL state. We also found that the electrostatic effects play crucial roles in the phospholipid transport process. The information obtained from this work could help us in designing novel drugs for P-type flippase disorders.

Funder

National Natural Science Foundation of Youth Fund Project

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3