Treatment of 3D In Vitro Tumoroids of Ovarian Cancer Using Photochemical Internalisation as a Drug Delivery Method

Author:

Mohammad Hadi Layla1ORCID,Stamati Katerina1ORCID,Yaghini Elnaz1,MacRobert Alexander J.1ORCID,Loizidou Marilena1ORCID

Affiliation:

1. Division of Surgery & Interventional Science, University College London, London NW3 2QG, UK

Abstract

Photochemical internalisation (PCI) is a means of achieving spatio-temporal control of cytosolic drug delivery using sub-lethal photodynamic therapy (PDT), with a photosensitiser that can be activated by non-ionising visible light. Various 3D models including those developed at our laboratory, where spheroids are grown in a compressed collagen matrix, have been used for studying anti-cancer drug effects. However, the use of a more biomimetic tumouroid model which consists of a relatively hypoxic central cancer mass surrounded by its microenvironment (stroma) has not yet been explored in either toxicity or phototoxicity studies involving PCI. Here, we examined the efficacy of PCI using a porphyrin photosensitiser and a cytotoxin (Saporin) on ovarian cancer tumouroids, with HEY ovarian cancer cells in the central cancer compartment, and HDF fibroblast cells and HUVEC endothelial cells in the surrounding stromal compartment. The efficacy was compared to tumouroids treated with either Saporin or PDT alone, or no treatment. PCI treatment was shown to be effective in the tumouroids (determined through viability assays and imaging) and caused a considerable decrease in the viability of cancer cells both within the central cancer mass and those which had migrated into the stroma, as well as a reduction in the cell density of surrounding HUVEC and HDFs. Post-treatment, the mean distance of stromal invasion by cancer cells from the original cancer mass following treatment with Saporin alone was 730 μm vs. 125 μm for PCI. PDT was also effective at reducing viability in the central cancer mass and stroma but required a higher photosensitiser dose and light dose than PCI. Tumouroids, as tissue mimics, are suitable models for interrogating multicellular events following pharmacological assault.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3