Artificial Neural Network Models for Accurate Predictions of Fat-Free and Fat Masses, Using Easy-to-Measure Anthropometric Parameters

Author:

Mitu Ivona1ORCID,Dimitriu Cristina-Daniela1,Mitu Ovidiu2ORCID,Preda Cristina3,Mitu Florin2ORCID,Ciocoiu Manuela1

Affiliation:

1. Department of Morpho-Functional Sciences II, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania

2. 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania

3. Department of Endocrinology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania

Abstract

Abdominal fat and fat-free masses report a close association with cardiometabolic risks, therefore this specific body compartment presents more interest than whole-body masses. This research aimed to develop accurate algorithms that predict body masses and specifically trunk fat and fat-free masses from easy to measure parameters in any setting. The study included 104 apparently healthy subjects, but with a higher-than-normal percent of adiposity or waist circumference. Multiple linear regression (MLR) and artificial neural network (ANN) models were built for predicting abdominal fat and fat-free masses in patients with relatively low cardiometabolic risks. The data were divided into training, validation and test sets, and this process was repeated 20 times per each model to reduce the bias of data division on model accuracy. The best performance models used a maximum number of five anthropometric inputs, with higher R2 values for ANN models than for MLR models (R2 = 0.96–0.98 vs. R2 = 0.80–0.94, p = 0.006). The root mean square error (RMSE) for all predicted parameters was significantly lower for ANN models than for MLR models, suggesting a higher accuracy for ANN models. From all body masses predicted, trunk fat mass and fat-free mass registered the best performance with ANN, allowing a possible error of 1.84 kg for predicting the correct trunk fat mass and 1.48 kg for predicting the correct trunk fat-free mass. The developed algorithms represent cost-effective prediction tools for the most relevant adipose and lean tissues involved in the physiopathology of cardiometabolic risks.

Funder

European Social Fund, Human Capital Operational Programme

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3