Enamel Structure Defects in Kdf1 Missense Mutation Knock-in Mice

Author:

Li Pei1,Zeng Binghui1ORCID,Xie Weihong1ORCID,Xiao Xue1,Lin Ling1,Yu Dongsheng1,Zhao Wei1

Affiliation:

1. Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China

Abstract

The Keratinocyte differentiation factor 1 (KDF1) is reported to take part in tooth formation in humans, but the dental phenotype of Kdf1 mutant mice has not been understood. Additionally, the role of the KDF1 gene in dental hard tissue development is rarely known. In this study, we constructed a Kdf1 missense mutation knock-in mouse model through CRISPR/Cas9 gene-editing technology. Enamel samples from wildtypes (WT) and Kdf1 homozygous mutants (HO) were examined using micro-computed tomography (micro-CT), scanning electron microscopy (SEM), an atomic force microscope (AFM) and Raman microspectroscopy. The results showed that a novel Kdf1 missense mutation (c. 908G>C, p.R303P) knock-in mice model was constructed successfully. The enamel of HO mice incisors appeared chalky and defective, exposing the rough interior of the inner enamel and dentin. Micro-CT showed that HO mice had lower volume and mineral density in their tooth enamel. In addition, declined thickness was found in the unerupted enamel layer of incisors in the HO mice. Using SEM and AFM, it was found that enamel prisms in HO mice enamel were abnormally and variously shaped with loose decussating crystal arrangement, meanwhile the enamel rods were partially fused and collapsed, accompanied by large gaps. Furthermore, misshapen nanofibrous apatites were disorderly combined with each other. Raman microspectroscopy revealed a compromised degree of order within the crystals in the enamel after the Kdf1 mutation. To conclude, we identified enamel structure defects in the Kdf1 missense mutation knock-in mice, which displayed fragmentary appearance, abnormally shaped prism structure, decreased mineral density, altered crystal ordering degree and chemical composition of the enamel layer. This may support the potential role of the KDF1 gene in the natural development of enamel.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3