Affiliation:
1. Department of Anesthesiology and Intensive Care, Medical University of Sofia, University Hospital “Tzaritza Yoanna—ISUL”, 1527 Sofia, Bulgaria
2. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria
Abstract
Therapeutic plasma exchange (TPE) is an efficient extracorporeal blood purification technique to remove circulating autoantibodies and other pathogenic substances. Its mechanism of action in immune-mediated neurological disorders includes immediate intravascular reduction of autoantibody concentration, pulsed induction of antibody redistribution, and subsequent immunomodulatory changes. Conventional TPE with 1 to 1.5 total plasma volume (TPV) exchange is a well-established treatment in Guillain-Barre Syndrome, Chronic Inflammatory Demyelinating Polyradiculoneuropathy, Neuromyelitis Optica Spectrum Disorder, Myasthenia Gravis and Multiple Sclerosis. There is insufficient evidence for the efficacy of so-called low volume plasma exchange (LVPE) (<1 TPV exchange) implemented either by the conventional or by a novel nanomembrane-based TPE in these neurological conditions, including their impact on conductivity and neuroregenerative recovery. In this narrative review, we focus on the role of nanomembrane-based technology as an alternative LVPE treatment option in these neurological conditions. Nanomembrane-based technology is a promising type of TPE, which seems to share the basic advantages of the conventional one, but probably with fewer adverse effects. It could play a valuable role in patient management by ameliorating neurological symptoms, improving disability, and reducing oxidative stress in a cost-effective way. Further research is needed to identify which patients benefit most from this novel TPE technology.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献