Effect of the Enrichment in c-Kit Stem Cell Potential of Foetal Human Amniotic Fluid Cells: Characterization from Single Cell Analysis to the Secretome Content

Author:

Casciaro Francesca1ORCID,Beretti Francesca2ORCID,Gatti Martina2,Persico Giuseppe3,Bertucci Emma4ORCID,Giorgio Marco13,Maraldi Tullia2

Affiliation:

1. Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy

2. Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy

3. Department of Experimental Oncology, IRCCS–European Institute of Oncology, 20139 Milano, Italy

4. Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, 41124 Modena, Italy

Abstract

Human amniotic fluid cells (hAFSCs) are a fascinating foetal cell-type that have important stem cell characteristics; however, they are a heterogeneous population that ranges from totally differentiated or progenitor cells to highly multipotent stem cells. There is no single approach to isolating the stem cell component, but the selection of a subpopulation of hAFSCs expressing c-Kit is widely employed, while a deep characterization of the two populations is still lacking. Here we performed single-cell and bulk RNAseq analysis to compare the gene expression profiles of adherent amniotic fluid cells and their subpopulation c-Kit+. Information deriving from this high throughput technology on the transcriptome was then confirmed for specific targets with protein expression experiments and functional analysis. In particular, transcriptome profiling identified changes in cellular distribution among the different clusters that correlated with significant differential expression in pathways related to stemness, proliferation, and cell cycle checkpoints. These differences were validated by RT-PCR, immunofluorescence, WB, and cell cycle assays. Interestingly, the two populations produced secretomes with different immune-modulating and pro-regenerative potentials. Indeed, the presence of TGFβ, HGF, IDO was higher in EVs deriving from c-Kit+ cells, unlike IL-6. These results suggest the existence of deep intra-population differences that can influence the stemness profile of hAFSCs. This study represents a proof-of-concept of the importance of selecting c-Kit positive fractions with higher potential in regenerative medicine applications.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3