Secretome of hESC-Derived MSC-like Immune and Matrix Regulatory Cells Mitigate Pulmonary Fibrosis through Antioxidant and Anti-Inflammatory Effects

Author:

Hu Wenfeng12,Yang Jiali13ORCID,Xue Jing1,Ma Jia14,Wu Shuang14,Wang Jing13,Xu Ranran2,Wei Jun2,Wang Yujiong1,Wang Shuyan2,Liu Xiaoming14ORCID

Affiliation:

1. Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan 750021, China

2. Zephyrm Biotechnologies Co., Ltd., Beijing 102200, China

3. Center Laboratory, Ningxia Clinical Research Institute, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan 750001, China

4. Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA

Abstract

Oxidative stress and inflammation are major drivers in the pathogenesis and progression of pulmonary fibrosis (PF). The mesenchymal stem cell (MSC) secretome has regenerative potential and immunomodulatory functions. Human embryonic stem cell (hESC)-derived MSC-like immune and matrix regulatory cells (IMRCs) are manufacturable with large-scale good manufacturing practice (GMP) preparation. In the present study, the antioxidative and anti-inflammatory properties and the therapeutic effect of the secretome of hESC-MSC-IMRC-derived conditioned culture medium (CM) (hESC-MSC-IMRC-CM) were investigated. Results revealed the capacities of hESC-MSC-IMRC-CM to reduce bleomycin (BLM)-induced reactive oxygen species (ROS), extracellular matrix (ECM) deposition, and epithelial–mesenchymal transition (EMT) in A549 cells. The administration of concentrated hESC-MSC-IMRC-CM significantly alleviated the pathogenesis of PF in lungs of BLM-injured mice, as accessed by pathohistological changes and the expression of ECM and EMT. A mechanistic study further demonstrated that the hESC-MSC-IMRC-CM was able to inhibit BLM-induced ROS and pro-inflammatory cytokines, accompanied by a reduced expression of Nox4, Nrf2, Ho-1, and components of the Tlr4/MyD88 signaling cascade. These results provide a proof of concept for the hESC-MSC-IMRC-derived secretome treatment of PF, in part mediated by their antioxidative and anti-inflammatory effects. This study thus reinforces the development of ready-to-use, cell-free hESC-MSC-IMRC secretome biomedicine for the treatment of PF in clinical settings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3