Application of Convolutional Neural Networks Using Action Potential Shape for In-Silico Proarrhythmic Risk Assessment

Author:

Jeong Da Un1,Yoo Yedam1,Marcellinus Aroli1,Lim Ki Moo123

Affiliation:

1. Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea

2. Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Republic of Korea

3. Meta Heart Inc., Gumi 39253, Republic of Korea

Abstract

This study proposes a convolutional neural network (CNN) model using action potential (AP) shapes as input for proarrhythmic risk assessment, considering the hypothesis that machine-learning features automatically extracted from AP shapes contain more meaningful information than do manually extracted indicators. We used 28 drugs listed in the comprehensive in vitro proarrhythmia assay (CiPA), consisting of eight high-risk, eleven intermediate-risk, and nine low-risk torsadogenic drugs. We performed drug simulations to generate AP shapes using experimental drug data, obtaining 2000 AP shapes per drug. The proposed CNN model was trained to classify the TdP risk into three levels, high-, intermediate-, and low-risk, based on in silico AP shapes generated using 12 drugs. We then evaluated the performance of the proposed model for 16 drugs. The classification accuracy of the proposed CNN model was excellent for high- and low-risk drugs, with AUCs of 0.914 and 0.951, respectively. The model performance for intermediate-risk drugs was good, at 0.814. Our proposed model can accurately assess the TdP risks of drugs from in silico AP shapes, reflecting the pharmacokinetics of ionic currents. We need to secure more drugs for future studies to improve the TdP-risk-assessment robustness.

Funder

Ministry of Food and Drug Safety

National Research Foundation of Korea

Ministry of Science and ICT (MSIT), Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3