Esaxerenone Protects against Diabetic Cardiomyopathy via Inhibition of the Chemokine and PI3K-Akt Signaling Pathway

Author:

Li Ziyue1,Zhang Huihui2,Zheng Weihan1ORCID,Yan Zi1,Yang Jiaxin3,Li Shiyu1,Huang Wenhua1

Affiliation:

1. Guangdong Medical Innovation 3D Printing Application Transformation Platform, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China

2. Burns Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

3. Key Laboratory of Medical Biomechanics, Southern Medical University, Guangzhou 510515, China

Abstract

(1) Background: Diabetic cardiomyopathy (DCM) is a unique form of cardiomyopathy that develops as a consequence of diabetes and significantly contributes to heart failure in patients. Esaxerenone, a selective non-steroidal mineralocorticoid receptor antagonist, has demonstrated potential in reducing the incidence of cardiovascular and renal events in individuals with chronic kidney and diabetes disease. However, the exact protective effects of esaxerenone in the context of DCM are still unclear. (2) Methods: The DCM model was successfully induced in mice by administering streptozotocin (55 mg/kg per day) for five consecutive days. After being fed a normal diet for 16 weeks, echocardiography was performed to confirm the successful establishment of the DCM model. Subsequent sequencing and gene expression analysis revealed significant differences in gene expression in the DCM group. These differentially expressed genes were identified as potential targets for DCM. By utilizing the Swiss Target Prediction platform, we employed predictive analysis to identify the potential targets of esaxerenone. A protein–protein-interaction (PPI) network was constructed using the common targets of esaxerenone and DCM. Enrichment analysis was conducted using Metascape. (3) Results: Compared to the control, the diabetic group exhibited impaired cardiac function and myocardial fibrosis. There was a total of 36 common targets, with 5 key targets. Enrichment analysis revealed that the chemokine and PI3K-Akt signaling pathway was considered a crucial pathway. A target-pathway network was established, from which seven key targets were identified. All key targets exhibited good binding characteristics when interacting with esaxerenone. (4) Conclusion: The findings of this study suggest that esaxerenone exhibits a favorable therapeutic effect on DCM, primarily by modulating the chemokine and PI3K-Akt signaling pathway.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3