How Deep Learning in Antiviral Molecular Profiling Identified Anti-SARS-CoV-2 Inhibitors

Author:

Ali Mohammed12,Park In Ho34ORCID,Kim Junebeom12,Kim Gwanghee12,Oh Jooyeon12,You Jin Sun12,Kim Jieun14,Shin Jeon-Soo124,Yoon Sang Sun1245

Affiliation:

1. Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

2. Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

3. Department of Biomedical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

4. Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

5. BioMe Inc., Seoul 02455, Republic of Korea

Abstract

The integration of artificial intelligence (AI) into drug discovery has markedly advanced the search for effective therapeutics. In our study, we employed a comprehensive computational–experimental approach to identify potential anti-SARS-CoV-2 compounds. We developed a predictive model to assess the activities of compounds based on their structural features. This model screened a library of approximately 700,000 compounds, culminating in the selection of the top 100 candidates for experimental validation. In vitro assays on human intestinal epithelial cells (Caco-2) revealed that 19 of these compounds exhibited inhibitory activity. Notably, eight compounds demonstrated dose-dependent activity in Vero cell lines, with half-maximal effective concentration (EC50) values ranging from 1 μM to 7 μM. Furthermore, we utilized a clustering approach to pinpoint potential nucleoside analog inhibitors, leading to the discovery of two promising candidates: azathioprine and its metabolite, thioinosinic acid. Both compounds showed in vitro activity against SARS-CoV-2, with thioinosinic acid also significantly reducing viral loads in mouse lungs. These findings underscore the utility of AI in accelerating drug discovery processes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3