In Vitro Chondrogenesis Induction by Short Peptides of the Carboxy-Terminal Domain of Transforming Growth Factor β1

Author:

Pitou Maria1ORCID,Papachristou Eleni1,Bratsios Dimitrios2,Kefala Georgia-Maria3,Tsagkarakou Anastasia S.3ORCID,Leonidas Demetrios D.3ORCID,Aggeli Amalia2,Papadopoulos Georgios E.3,Papi Rigini M.1ORCID,Choli-Papadopoulou Theodora1

Affiliation:

1. Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece

2. Laboratory of Biomedical Engineering, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece

3. Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece

Abstract

Τransforming growth factor β1 (TGF-β1) comprises a key regulator protein in many cellular processes, including in vivo chondrogenesis. The treatment of human dental pulp stem cells, separately, with Leu83-Ser112 (C-terminal domain of TGF-β1), as well as two very short peptides, namely, 90-YYVGRKPK-97 (peptide 8) and 91-YVGRKP-96 (peptide 6) remarkably enhanced the chondrogenic differentiation capacity in comparison to their full-length mature TGF-β1 counterpart either in monolayer cultures or 3D scaffolds. In 3D scaffolds, the reduction of the elastic modulus and viscous modulus verified the production of different amounts and types of ECM components. Molecular dynamics simulations suggested a mode of the peptides’ binding to the receptor complex TβRII-ALK5 and provided a possible structural explanation for their role in inducing chondrogenesis, along with endogenous TGF-β1. Further experiments clearly verified the aforementioned hypothesis, indicating the signal transduction pathway and the involvement of TβRII-ALK5 receptor complex. Real-time PCR experiments and Western blot analysis showed that peptides favor the ERK1/2 and Smad2 pathways, leading to an articular, extracellular matrix formation, while TGF-β1 also favors the Smad1/5/8 pathway which leads to the expression of the metalloproteinases ADAMTS-5 and MMP13 and, therefore, to a hypertrophic chondrocyte phenotype. Taken together, the two short peptides, and, mainly, peptide 8, could be delivered with a scaffold to induce in vivo chondrogenesis in damaged articular cartilage, constituting, thus, an alternative therapeutic approach for osteoarthritis.

Funder

Operational Program Competitiveness, Entrepreneurship and Innovation

Operational Programm «Human Resources Development, Education and Lifelong Learning»

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3