Male and Female Mitochondria Respond Differently after Exercising in Acute Hypoxia

Author:

Lai Ylenia1,Loy Francesco1ORCID,Isola Michela1,Noli Roberta1,Rinaldi Andrea1ORCID,Lobina Carla2,Vargiu Romina1ORCID,Cesare Marincola Flaminia3ORCID,Isola Raffaella1ORCID

Affiliation:

1. Department of Biological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy

2. Neuroscience Institute, Division of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy

3. Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy

Abstract

The use of hypoxic devices among athletes who train in normobaric hypoxia has become increasingly popular; however, the acute effects on heart and brain metabolism are not yet fully understood. This study aimed to investigate the mitochondrial bioenergetics in trained male and female Wistar rats after acute hypoxia training. The experimental plan included exercising for 30 min on a treadmill in a Plexiglas cage connected to a hypoxic generator set at 12.5% O2 or in normoxia. After the exercise, the rats were sacrificed, and their mitochondria were isolated from their brains and hearts. The bioenergetics for each complex of the electron transport chain was tested using a Clark-type electrode. The results showed that following hypoxia training, females experienced impaired oxidative phosphorylation through complex II in heart subsarcolemmal mitochondria, while males had an altered ADP/O in heart interfibrillar mitochondria, without any change in oxidative capacity. No differences from controls were evident in the brain, but an increased electron transport system efficiency was observed with complex I and IV substrates in males. Therefore, the study’s findings suggest that hypoxia training affects the heart mitochondria of females more than males. This raises a cautionary flag for female athletes who use hypoxic devices.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3