Affiliation:
1. Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, 16132 Genoa, Italy
2. Department of Pharmacy (DIFAR), Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy
Abstract
Evidence supports the pathophysiological relevance of crosstalk between the neurotransmitters Glycine and Glutamate and their close interactions; some reports even support the possibility of Glycine–Glutamate cotransmission in central nervous system (CNS) areas, including the hippocampus. Functional studies with isolated nerve terminals (synaptosomes) permit us to study transporter-mediated interactions between neurotransmitters that lead to the regulation of transmitter release. Our main aims here were: (i) to investigate release-regulating, transporter-mediated interactions between Glycine and Glutamate in hippocampal nerve terminals and (ii) to determine the coexistence of transporters for Glycine and Glutamate in these terminals. Purified synaptosomes, analyzed at the ultrastructural level via electron microscopy, were used as the experimental model. Mouse hippocampal synaptosomes were prelabeled with [3H]D-Aspartate or [3H]Glycine; the release of radiolabeled tracers was monitored with the superfusion technique. The main findings were that (i) exogenous Glycine stimulated [3H]D-Aspartate release, partly by activation of GlyT1 and in part, unusually, through GlyT2 transporters and that (ii) D-Aspartate stimulated [3H]glycine release by a process that was sensitive to Glutamate transporter blockers. Based on the features of the experimental model used, it is suggested that functional transporters for Glutamate and Glycine coexist in a small subset of hippocampal nerve terminals, a condition that may also be compatible with cotransmission; glycinergic and glutamatergic transporters exhibit different functions and mediate interactions between the neurotransmitters. It is hoped that increased information on Glutamate–Glycine interactions in different areas, including the hippocampus, will contribute to a better knowledge of drugs acting at “glycinergic” targets, currently under study in relation with different CNS pathologies.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献