Relevance of Dynamic 18F-DOPA PET Radiomics for Differentiation of High-Grade Glioma Progression from Treatment-Related Changes

Author:

Ahrari ShamimehORCID,Zaragori TimothéeORCID,Rozenblum Laura,Oster Julien,Imbert Laëtitia,Kas AurélieORCID,Verger AntoineORCID

Abstract

This study evaluates the relevance of 18F-DOPA PET static and dynamic radiomics for differentiation of high-grade glioma (HGG) progression from treatment-related changes (TRC) by comparing diagnostic performances to the current PET imaging standard of care. Eighty-five patients with histologically confirmed HGG and investigated by dynamic 18F-FDOPA PET in two institutions were retrospectively selected. ElasticNet logistic regression, Random Forest and XGBoost machine models were trained with different sets of features—radiomics extracted from static tumor-to-background-ratio (TBR) parametric images, radiomics extracted from time-to-peak (TTP) parametric images, as well as combination of both—in order to discriminate glioma progression from TRC at 6 months from the PET scan. Diagnostic performances of the models were compared to a logistic regression model with TBRmean ± clinical features used as reference. Training was performed on data from the first center, while external validation was performed on data from the second center. Best radiomics models showed only slightly better performances than the reference model (respective AUCs of 0.834 vs. 0.792, p < 0.001). Our current results show similar findings at the multicentric level using different machine learning models and report a marginal additional value for TBR static and TTP dynamic radiomics over the classical analysis based on TBR values.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3