A Combined Spectroscopic and In Silico Approach to Evaluate the Interaction of Human Frataxin with Mitochondrial Superoxide Dismutase

Author:

Doni Davide,Meggiolaro Marta,Santos JavierORCID,Audran Gérard,Marque Sylvain R. A.,Costantini Paola,Bortolus MarcoORCID,Carbonera Donatella

Abstract

Frataxin (FXN) is a highly conserved mitochondrial protein whose deficiency causes Friedreich’s ataxia, a neurodegenerative disease. The precise physiological function of FXN is still unclear; however, there is experimental evidence that the protein is involved in biosynthetic iron–sulfur cluster machinery, redox imbalance, and iron homeostasis. FXN is synthesized in the cytosol and imported into the mitochondria, where it is proteolytically cleaved to the mature form. Its involvement in the redox imbalance suggests that FXN could interact with mitochondrial superoxide dismutase (SOD2), a key enzyme in antioxidant cellular defense. In this work, we use site-directed spin labelling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) and fluorescence quenching experiments to investigate the interaction between human FXN and SOD2 in vitro. Spectroscopic data are combined with rigid body protein–protein docking to assess the potential structure of the FXN-SOD2 complex, which leaves the metal binding region of FXN accessible to the solvent. We provide evidence that human FXN interacts with human SOD2 in vitro and that the complex is in fast exchange. This interaction could be relevant during the assembly of iron-sulfur (FeS) clusters and/or their incorporation in proteins when FeS clusters are potentially susceptible to attacks by reactive oxygen species.

Funder

University of Padua

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3