Abstract
High-resolution episcopic microscopy (HREM) is a three-dimensional (3D) episcopic imaging modality based on the acquisition of two-dimensional (2D) images from the cut surface of a block of tissue embedded in resin. Such images, acquired serially through the entire length/depth of the tissue block, are aligned and stacked for 3D reconstruction. HREM has proven to be specifically advantageous when integrated in correlative multimodal imaging (CMI) pipelines. CMI creates a composite and zoomable view of exactly the same specimen and region of interest by (sequentially) correlating two or more modalities. CMI combines complementary modalities to gain holistic structural, functional, and chemical information of the entire sample and place molecular details into their overall spatiotemporal multiscale context. HREM has an advantage over in vivo 3D imaging techniques on account of better histomorphologic resolution while simultaneously providing volume data. HREM also has certain advantages over ex vivo light microscopy modalities. The latter can provide better cellular resolution but usually covers a limited area or volume of tissue, with limited 3D structural context. HREM has predominantly filled a niche in the phenotyping of embryos and characterisation of anatomic developmental abnormalities in various species. Under the umbrella of CMI, when combined with histopathology in a mutually complementary manner, HREM could find wider application in additional nonclinical and translational areas. HREM, being a modified histology technique, could also be incorporated into specialised preclinical pathology workflows. This review will highlight HREM as a versatile imaging platform in CMI approaches and present its benefits and limitations.
Funder
European Cooperation in Science and Technology
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献