Efficient Portable Urea Biosensor Based on Urease Immobilized Membrane for Monitoring of Physiological Fluids

Author:

Kim Jee Young,Sung Gun YongORCID,Park MinORCID

Abstract

Numerous studies have addressed the utilization of glutaraldehyde (GA) as a homobifunctional cross-linker. However, its applicability has been impeded due to several issues, including the tendency of GA molecules to undergo polymerization. Herein, a portable urea biosensor was developed for the real-time monitoring of the flow of physiological fluids; this was achieved by using disuccinimidyl cross-linker-based urease immobilization. Urease was immobilized on a porous polytetrafluoroethylene (PTFE) solid support using different disuccinimidyl cross-linkers, namely disuccinimidyl glutarate (DSG), disuccinimidyl suberate (DSS) and bis-N-succinimidyl-(pentaethylene glycol) ester (BS(PEG)5). A urease activity test revealed that DSS exhibited the highest urease immobilizing efficiency, whereas FT-IR analysis confirmed that urease was immobilized on the PTFE membrane via DSS cross-linking. The membrane was inserted in a polydimethylsiloxane (PDMS) fluidic chamber that generated an electrochemical signal in the presence of a flowing fluid containing urea. Urea samples were allowed to flow into the urea biosensor (1.0 mL/min) and the signal was measured using chronoamperometry. The sensitivity of the DSS urea biosensor was the highest of all the trialed biosensors and was found to be superior to the more commonly used GA cross-linker. To simulate real-time monitoring in a human patient, flowing urea-spiked human serum was measured and the effective urease immobilization of the DSS urea biosensor was confirmed. The repeatability and interference of the urea biosensor were suitable for monitoring urea concentrations typically found in human patients.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3