Release of Anti-Inflammatory Palmitoleic Acid and Its Positional Isomers by Mouse Peritoneal Macrophages

Author:

Astudillo Alma M.,Meana Clara,Bermúdez Miguel A.ORCID,Pérez-Encabo Alfonso,Balboa María A.ORCID,Balsinde JesúsORCID

Abstract

Positional isomers of hexadecenoic acid are considered as fatty acids with anti-inflammatory properties. The best known of them, palmitoleic acid (cis-9-hexadecenoic acid, 16:1n-7), has been identified as a lipokine with important beneficial actions in metabolic diseases. Hypogeic acid (cis-7-hexadecenoic acid, 16:1n-9) has been regarded as a possible biomarker of foamy cell formation during atherosclerosis. Notwithstanding the importance of these isomers as possible regulators of inflammatory responses, very little is known about the regulation of their levels and distribution and mobilization among the different lipid pools within the cell. In this work, we describe that the bulk of hexadecenoic fatty acids found in mouse peritoneal macrophages is esterified in a unique phosphatidylcholine species, which contains palmitic acid at the sn-1 position, and hexadecenoic acid at the sn-2 position. This species markedly decreases when the macrophages are activated with inflammatory stimuli, in parallel with net mobilization of free hexadecenoic acid. Using pharmacological inhibitors and specific gene-silencing approaches, we demonstrate that hexadecenoic acids are selectively released by calcium-independent group VIA phospholipase A2 under activation conditions. While most of the released hexadecenoic acid accumulates in free fatty acid form, a significant part is also transferred to other phospholipids to form hexadecenoate-containing inositol phospholipids, which are known to possess growth-factor-like-properties, and are also used to form fatty acid esters of hydroxy fatty acids, compounds with known anti-diabetic and anti-inflammatory properties. Collectively, these data unveil new pathways and mechanisms for the utilization of palmitoleic acid and its isomers during inflammatory conditions, and raise the intriguing possibility that part of the anti-inflammatory activity of these fatty acids may be due to conversion to other lipid mediators.

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3